Conductivity of graphene with resonant adsorbates: beyond the nearest neighbor hopping model
Guy Trambly de Laissardière and Didier Mayou
Abstract
Adsorbates on graphene can create resonances that lead to efficient electron scattering and strongly affect the electronic conductivity. Therefore, a proper description of these resonances is important to gain a good insight into their effect on conductivity. The characteristics of the resonance and in particular its T-matrix depend on the adsorbate itself but also on the electronic structure of graphene. Here we show that a proper tight-binding model of graphene which includes hopping beyond the nearest-neighbor leads to sizable modifications of the scattering properties with respect to the mostly used nearest neighbor hopping model. We compare results obtained with hopping beyond the nearest-neighbor to those of our recent work (2013 Phys. Rev. Lett. 113 146601). We conclude that the universal properties discussed in our recent work are unchanged but that a detailed comparison with experiments requires a sufficiently precise tight-binding model of the graphene layer