Plasmonic enhancement of light trapping into organic solar cells
Bich Ha Nguyen, Van Hieu Nguyen and Dinh Lam Vu
Abstract
The present work is devoted to the review of the methods to improve light trapping into polymer solar cells. After a discussion on the important role of the improvement of the light-trapping technique in the fabrication of solar cells by applying the plasmonic enhancement effect, we review the results of the study on this topic, which were obtained mainly during recent years. The light-trapping nanostructures usually comprised the following basic elements: antireflection coating, randomly distributed or symmetric–periodic monolayers of metallic spherical nanoparticles (NPs), metallic NPs with different shapes, spherical NPs with core–shell structure, nanovoids, plasmonic metallic grating, grating organic active layer, grating indium tin oxide (ITO) layer, dielectric grating, photonic structure, and plasmonic cavity with subwavelength hole array. Each light-trapping nanostructure may use either one or two of the above-mentioned basic elements