Synthesis, characterization, and catalytic applications of hematite (α-Fe2O3) nanoparticles as reusable nanocatalyst
Nagaraj Basavegowda, Kanchan Mishra and Yong Rok Lee
Abstract
A novel magnetically recoverable hematite nanoparticles (α-Fe2O3 NPs) was fabricated by a simple, one pot, and green method using the rhizome of Cyperus rotundus L., as a reducing and stabilizing agent. The prepared nanoparticles were well characterized by all parameters. TEM showed that the hematite nanoparticles had a rhombohedral shape and ranged in size from 80 to 100 nm. The phase study of the α-Fe2O3 nanoparticles was confirmed by Raman spectroscopy. In addition, the synthesized nanoparticles shows good photocatalytic activity in degradation of highly toxic Congo red dye within 25 min, and the same NPs exhibits higher catalytic activity for the reduction of 4-nitro-o-phenylenediamine (4-NPD) to 1,2,4-benzenetriamine in the presence of NaBH4 within 12 min. After the reaction, the catalyst was recovered and reused three times without significant loss of catalytic activity