Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films
Anh Son Hoang
Abstract
Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in a pure polyurethane resin by grinding in a planetary ball mill. The structure and surface morphology of the MWCNTs and MWCNT/polyurethane composites were studied by filed emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) methods. The electrical conductivity at room temperature and electromagnetic interference (EMI) shielding effectiveness (SE) of the composite films with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in a frequency range of 8–12 GHz (X-band). The experimental results show that with a low MWCNT concentration the composite films could achieve a high conductivity and their EMI SE has a strong dependence on MWCNT content. For the composite films with 22 wt% of MWCNTs, the EMI SE attained an average value of 20 dB, so that the shielding effect reduced the penetrating power to 1%